3.68 \(\int \frac {\sec (e+f x) (a+a \sec (e+f x))}{\sqrt {c-c \sec (e+f x)}} \, dx\)

Optimal. Leaf size=77 \[ \frac {2 a \tan (e+f x)}{f \sqrt {c-c \sec (e+f x)}}-\frac {2 \sqrt {2} a \tan ^{-1}\left (\frac {\sqrt {c} \tan (e+f x)}{\sqrt {2} \sqrt {c-c \sec (e+f x)}}\right )}{\sqrt {c} f} \]

[Out]

-2*a*arctan(1/2*c^(1/2)*tan(f*x+e)*2^(1/2)/(c-c*sec(f*x+e))^(1/2))*2^(1/2)/f/c^(1/2)+2*a*tan(f*x+e)/f/(c-c*sec
(f*x+e))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.11, antiderivative size = 77, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 32, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.094, Rules used = {3956, 3795, 203} \[ \frac {2 a \tan (e+f x)}{f \sqrt {c-c \sec (e+f x)}}-\frac {2 \sqrt {2} a \tan ^{-1}\left (\frac {\sqrt {c} \tan (e+f x)}{\sqrt {2} \sqrt {c-c \sec (e+f x)}}\right )}{\sqrt {c} f} \]

Antiderivative was successfully verified.

[In]

Int[(Sec[e + f*x]*(a + a*Sec[e + f*x]))/Sqrt[c - c*Sec[e + f*x]],x]

[Out]

(-2*Sqrt[2]*a*ArcTan[(Sqrt[c]*Tan[e + f*x])/(Sqrt[2]*Sqrt[c - c*Sec[e + f*x]])])/(Sqrt[c]*f) + (2*a*Tan[e + f*
x])/(f*Sqrt[c - c*Sec[e + f*x]])

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 3795

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2/f, Subst[Int[1/(2
*a + x^2), x], x, (b*Cot[e + f*x])/Sqrt[a + b*Csc[e + f*x]]], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0
]

Rule 3956

Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))^(n_.))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.)
+ (a_)], x_Symbol] :> Simp[(-2*d*Cot[e + f*x]*(c + d*Csc[e + f*x])^(n - 1))/(f*(2*n - 1)*Sqrt[a + b*Csc[e + f*
x]]), x] + Dist[(2*c*(2*n - 1))/(2*n - 1), Int[(Csc[e + f*x]*(c + d*Csc[e + f*x])^(n - 1))/Sqrt[a + b*Csc[e +
f*x]], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IGtQ[n, 0]

Rubi steps

\begin {align*} \int \frac {\sec (e+f x) (a+a \sec (e+f x))}{\sqrt {c-c \sec (e+f x)}} \, dx &=\frac {2 a \tan (e+f x)}{f \sqrt {c-c \sec (e+f x)}}+(2 a) \int \frac {\sec (e+f x)}{\sqrt {c-c \sec (e+f x)}} \, dx\\ &=\frac {2 a \tan (e+f x)}{f \sqrt {c-c \sec (e+f x)}}-\frac {(4 a) \operatorname {Subst}\left (\int \frac {1}{2 c+x^2} \, dx,x,\frac {c \tan (e+f x)}{\sqrt {c-c \sec (e+f x)}}\right )}{f}\\ &=-\frac {2 \sqrt {2} a \tan ^{-1}\left (\frac {\sqrt {c} \tan (e+f x)}{\sqrt {2} \sqrt {c-c \sec (e+f x)}}\right )}{\sqrt {c} f}+\frac {2 a \tan (e+f x)}{f \sqrt {c-c \sec (e+f x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.64, size = 132, normalized size = 1.71 \[ -\frac {i \sqrt {2} a \left (-1+e^{i (e+f x)}\right ) \left (\sqrt {2} \left (1+e^{i (e+f x)}\right )-2 \sqrt {1+e^{2 i (e+f x)}} \tanh ^{-1}\left (\frac {1+e^{i (e+f x)}}{\sqrt {2} \sqrt {1+e^{2 i (e+f x)}}}\right )\right )}{f \left (1+e^{2 i (e+f x)}\right ) \sqrt {c-c \sec (e+f x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(Sec[e + f*x]*(a + a*Sec[e + f*x]))/Sqrt[c - c*Sec[e + f*x]],x]

[Out]

((-I)*Sqrt[2]*a*(-1 + E^(I*(e + f*x)))*(Sqrt[2]*(1 + E^(I*(e + f*x))) - 2*Sqrt[1 + E^((2*I)*(e + f*x))]*ArcTan
h[(1 + E^(I*(e + f*x)))/(Sqrt[2]*Sqrt[1 + E^((2*I)*(e + f*x))])]))/((1 + E^((2*I)*(e + f*x)))*f*Sqrt[c - c*Sec
[e + f*x]])

________________________________________________________________________________________

fricas [A]  time = 0.52, size = 272, normalized size = 3.53 \[ \left [\frac {\sqrt {2} a c \sqrt {-\frac {1}{c}} \log \left (-\frac {2 \, \sqrt {2} {\left (\cos \left (f x + e\right )^{2} + \cos \left (f x + e\right )\right )} \sqrt {\frac {c \cos \left (f x + e\right ) - c}{\cos \left (f x + e\right )}} \sqrt {-\frac {1}{c}} - {\left (3 \, \cos \left (f x + e\right ) + 1\right )} \sin \left (f x + e\right )}{{\left (\cos \left (f x + e\right ) - 1\right )} \sin \left (f x + e\right )}\right ) \sin \left (f x + e\right ) - 2 \, {\left (a \cos \left (f x + e\right ) + a\right )} \sqrt {\frac {c \cos \left (f x + e\right ) - c}{\cos \left (f x + e\right )}}}{c f \sin \left (f x + e\right )}, \frac {2 \, {\left (\sqrt {2} a \sqrt {c} \arctan \left (\frac {\sqrt {2} \sqrt {\frac {c \cos \left (f x + e\right ) - c}{\cos \left (f x + e\right )}} \cos \left (f x + e\right )}{\sqrt {c} \sin \left (f x + e\right )}\right ) \sin \left (f x + e\right ) - {\left (a \cos \left (f x + e\right ) + a\right )} \sqrt {\frac {c \cos \left (f x + e\right ) - c}{\cos \left (f x + e\right )}}\right )}}{c f \sin \left (f x + e\right )}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)*(a+a*sec(f*x+e))/(c-c*sec(f*x+e))^(1/2),x, algorithm="fricas")

[Out]

[(sqrt(2)*a*c*sqrt(-1/c)*log(-(2*sqrt(2)*(cos(f*x + e)^2 + cos(f*x + e))*sqrt((c*cos(f*x + e) - c)/cos(f*x + e
))*sqrt(-1/c) - (3*cos(f*x + e) + 1)*sin(f*x + e))/((cos(f*x + e) - 1)*sin(f*x + e)))*sin(f*x + e) - 2*(a*cos(
f*x + e) + a)*sqrt((c*cos(f*x + e) - c)/cos(f*x + e)))/(c*f*sin(f*x + e)), 2*(sqrt(2)*a*sqrt(c)*arctan(sqrt(2)
*sqrt((c*cos(f*x + e) - c)/cos(f*x + e))*cos(f*x + e)/(sqrt(c)*sin(f*x + e)))*sin(f*x + e) - (a*cos(f*x + e) +
 a)*sqrt((c*cos(f*x + e) - c)/cos(f*x + e)))/(c*f*sin(f*x + e))]

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: NotImplementedError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)*(a+a*sec(f*x+e))/(c-c*sec(f*x+e))^(1/2),x, algorithm="giac")

[Out]

Exception raised: NotImplementedError >> Unable to parse Giac output: Unable to check sign: (4*pi/x/2)>(-4*pi/
x/2)Unable to check sign: (4*pi/x/2)>(-4*pi/x/2)Unable to check sign: (4*pi/x/2)>(-4*pi/x/2)Unable to check si
gn: (4*pi/x/2)>(-4*pi/x/2)Unable to check sign: (4*pi/x/2)>(-4*pi/x/2)2/f*((i*a*sqrt(2)*atan(-i)-a*sqrt(2))/sq
rt(-c)*sign(tan((f*x+exp(1))/2))+2*a*(-1/2*sqrt(2)*atan(sqrt(c*tan((f*x+exp(1))/2)^2-c)/sqrt(c))/sqrt(c)/sign(
tan((f*x+exp(1))/2))/sign(tan((f*x+exp(1))/2)^2-1)-1/sqrt(2)/sqrt(c*tan((f*x+exp(1))/2)^2-c)/sign(tan((f*x+exp
(1))/2))/sign(tan((f*x+exp(1))/2)^2-1)))

________________________________________________________________________________________

maple [A]  time = 1.60, size = 85, normalized size = 1.10 \[ -\frac {2 a \left (\arctan \left (\frac {1}{\sqrt {-\frac {2 \cos \left (f x +e \right )}{1+\cos \left (f x +e \right )}}}\right ) \sqrt {-\frac {2 \cos \left (f x +e \right )}{1+\cos \left (f x +e \right )}}-1\right ) \sin \left (f x +e \right )}{f \sqrt {\frac {c \left (-1+\cos \left (f x +e \right )\right )}{\cos \left (f x +e \right )}}\, \cos \left (f x +e \right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(f*x+e)*(a+a*sec(f*x+e))/(c-c*sec(f*x+e))^(1/2),x)

[Out]

-2*a/f*(arctan(1/(-2*cos(f*x+e)/(1+cos(f*x+e)))^(1/2))*(-2*cos(f*x+e)/(1+cos(f*x+e)))^(1/2)-1)*sin(f*x+e)/(c*(
-1+cos(f*x+e))/cos(f*x+e))^(1/2)/cos(f*x+e)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (a \sec \left (f x + e\right ) + a\right )} \sec \left (f x + e\right )}{\sqrt {-c \sec \left (f x + e\right ) + c}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)*(a+a*sec(f*x+e))/(c-c*sec(f*x+e))^(1/2),x, algorithm="maxima")

[Out]

integrate((a*sec(f*x + e) + a)*sec(f*x + e)/sqrt(-c*sec(f*x + e) + c), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {a+\frac {a}{\cos \left (e+f\,x\right )}}{\cos \left (e+f\,x\right )\,\sqrt {c-\frac {c}{\cos \left (e+f\,x\right )}}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + a/cos(e + f*x))/(cos(e + f*x)*(c - c/cos(e + f*x))^(1/2)),x)

[Out]

int((a + a/cos(e + f*x))/(cos(e + f*x)*(c - c/cos(e + f*x))^(1/2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ a \left (\int \frac {\sec {\left (e + f x \right )}}{\sqrt {- c \sec {\left (e + f x \right )} + c}}\, dx + \int \frac {\sec ^{2}{\left (e + f x \right )}}{\sqrt {- c \sec {\left (e + f x \right )} + c}}\, dx\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)*(a+a*sec(f*x+e))/(c-c*sec(f*x+e))**(1/2),x)

[Out]

a*(Integral(sec(e + f*x)/sqrt(-c*sec(e + f*x) + c), x) + Integral(sec(e + f*x)**2/sqrt(-c*sec(e + f*x) + c), x
))

________________________________________________________________________________________